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1 Introduction

The work performed in this period (along with work in preceeding periods)

is reported in a PhD Dissertation entitled Video Transmission on ATM Net-

works by Y-.C. Chen, and a paper presented at the International Telecom-

munication Conference. We give a brief description of the work below, with

details left to the dissertation and paper which are included with this re-

port. Also included is a paper on constrained joint source/channel coding

submitted to the IEEE Journal on Selected Areas of Communications.

Currently we are continuing with work in both areas reported here. In par-

ticular, we are examining a number of strategies for error concealment in

packet video, and extending the vector quantization work.

2 Video Transmission on ATM Networks

The emergence of broadband ISDN as the network for the future brings with

it the promise of integration of all proposed services in a flexible environment.

In order to achieve this flexibility, asynchronous transfer mode (ATM) has

been proposed as the transfer technique. This ATM-based B-ISDN network

will be the carrier for services like HDTV, interactive television, multime-

dia workstation, and a lot more. As can be seen from these applications

the proposed network will carry a lot of video information. In the past,

video coding algorithms have been developed mainly for use over dedicated

communication links. Although many advantages can be foreseen from this

new environment, video transmission over ATM networks also present seri-

ous challenges to network providers and video specialists. These include the

development of fair and efficient resource allocation schemes, policing func-

tions, and more importantly, from the point of view of the video specialist,

the bridging of network- based performance parameters and controls to the

corresponding entities in video coding.

During this period we conducted a study on the bridging of network trans-

mission performance and video coding. In the ideal case one would have have

real time simulators for both video codec and network. The interactions be-

tween these two elements could then be studied extensively. However, it



would requirea hugeamount of effort to build a real time simulator. Given
the fact that there is still a lot of uncertainty about proposedvideo coding
algorithmsand networkprotocols,building a simulator that would handleall
the different scenariosis not feasible. The approachtaken in this work is to
dealwith eachkeycomponentin packetvideoseparately.By doing that, we
hope to obtain an in-depth understandingof the whole problem and come
up with suitable solutions.

The successfultransmissionof variable bit rate video over ATM networks
relieson the interaction betweenthe videocoding algorithm and the ATM
networks. Two aspectsof networks that determine the efficiency of video
transmissionare the resourceallocationalgorithm and the congestioncontrol
algorithm.

The resourceallocation algorithm dictates the costand blocking probability
of aconnectiondependingon the traffic's characteristic. An efficientresource
allocation schemeincreasesnetwork utilization and therefore decreasesthe
cost of transmission.A promisingapproachto resourceallocation is equiva-

lent bandwidth allocation [1]. This approach not only describes the required

bandwidth for different traffic scenarios based on traffic characteristics and

quality of service(QOS) requirements but is easy to manage as well.

The congestion control algorithm is a major factor in determining the quality

of a call. The policing function plays a vital role in monitoring traffic flow and

thus maintains a well-operated network situation. Unfortunately, because of

the variety of traffic, it is not an easy task to effectively regulate connection

to its agreed-upon contract effectively. Of the schemes proposed to date

the leak 9 bucket(LB) algorithm comes closest to being effective. We propose

a dual leaky bucket mechanism based on equivalent bandwidth assignment,

with the first bucket monitoring the mean bandwidth and the second one

monitoring the equivalent bandwidth. With such a design, a misbehaved

connection can be easily detected and network congestion can be prevented

effectively (if resource allocation is performed appropriately). Also network

utilization is effective with a good resource allocation scheme which takes

advantage of multiplexing gain. Other congestion control approaches which

have effects in video codec design will also be investigated.

Based on the understanding of the transmitting channel, we propose a com-

plete set of design principles for video codecs. Closely following the concept
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of the dual leaky bucketmechanism,a prioritized codingschemeis presented
and its performanceis studied. We alsodevelopsomecombinedapproaches
to smooth the video output flow. This in turn leadsto a reduction in the
requestedequivalentbandwidth. Finally, someerror control algorithms are
proposedto combat the effect of cell loss which comesfrom the nature of
packetvideo.

Therearestill a lot of issuesabout B-ISDN left to beclarified. It will require
extensiveefforts in order to clearthe confusionamonguser,serviceprovider,
and equipment manufacturer and acceleratethe pace of implementing B-
ISDN. This work providesa designapproachfor videotransmissionbasedon
the understandingand evaluation of current ATM networks. We also hope
that the results and conclusionspresentedin this work may contribute to
createa guidelinefor the designof packetvideo codecin the future.

3 Vector Quantization for Nonstationary Sources

Introduction

Vector quantization (VQ) is one of the more popular compression techniques

to appear in the last twenty years. Numerous compression techniques, which

incorporate VQ, have been proposed. While the LBG VQ [2] provides ex-

cellent compression, there are also several drawbacks to the use of the LBG

quantizers. These include search complexity and memory requirements, espe-

cially at higher rates, and a mismatch between the codebook and the inputs.

The latter mainly stems from the fact that the VQ is generally designed for a

specific rate and a specific class of inputs. When the bandwidth constraints

and/or the source statistics change this can result in severe degradation in

the quality of the reconstructed output.

In order to reduce the search complexity, a number of techniques have been

proposed which impose structure on the codebook entries. These include

tree structured VQs, lattice VQs, and classified VQs [3]. However, each

approach has its own drawbacks. The tree structured and classified VQs do

nothing about the memory requirements. In fact the tree structured VQs can

actually excarbate the memory requirements problem. The lattice quantizers
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canavoidboth searchand memory problems,however,thesequantizerslack
the pattern matching ability of the LBG VQ. Residual quantizers (RQs),
alsoknown asmultiple-stageVQs, havebeenintroduced to reduceboth the
computation and memory requirements[4,5, 6].

All of thesemethodsassumethat the codebook, large or small, accurately
reflectsthe input imagestatistics. Howeverthis is not alwaysthe case,espe-
cially whencodinga nonstationary sourcesuchasa videosequence.Various
approacheswhichusesomesort of codebookadaptation havebeenproposed
in whichelementsof the codebookare replacedascodingproceeds[7,8, 9, 10].
Theseapproachesaregenerallyof a forward adaptivenature in that the up-
dateprocedurerequiresthe transmissionof side information.

In this work, we proposean adaptive techniquefor vector quantization of
imagesand videosequences.The techniqueis an extensionof the recursively
indexedscalar quantization (RISQ) algorithm [11]. This approachinvolves
the useof a small codebook, reducing the computational complexity. The
code book adapts to the input statistics. We present both forward and
backwardadaptation rules.

Proposed Quantizer

While the RISQ algorithm has been quite successful in a number of applica-

tions, it is not possible to directly extend it to vector quantization as there

are some fundamental differences between scalar and vector quantizers. The

input to a scalar quantizer is assumed to be lid. The vector quantizer on the

other hand can be viewed as a pattern matching algorithm [12]. The input is

assumed to be one of a number of different patterns. The scalar quantizer is

used after the redundancy has been removed from the source sequence, while

the VQ takes advantage of the redundancy in the data.

With these differences in mind we view the recursively indexed vector quan-

tizer (RIVQ) as a two stage process. The first stage performs the normal

pattern matching function, while the second stage recursively quantizes the

residual if the magnitude of the residual is greater than some prespecified

threshold. The codebook of the second stage is ordered so that the magni-

tude of the codebook entries is a nondecreasing function of its index. We

then choose an index I which will determine the mode in which the RIVQ



operates.

The quantization rule Q is given as follows:

For a given input value x0, we have the following:

• Quantize x0 with the first stage quantizer Q1.

• If the residual Ilxo-Ql(xo)ll is below a specified threshold then Ql(XO)

is the nearest output level.

• Otherwise generate X 1 = X 0 - QI(X0) and quantize using the second

stage quantizer Q2. Check if the index J1 of the output is below the

index I. If so, Q(zo) = Ql(xo) + Q2(xl). If not, form z2 = x2 - Q(Xl)

and do the same for the same as for Xl.

This process is repeated until for some time m, the index Jm falls below the

index I, in which case x0 will be quantized to

Q(Xo) =-- Ql(XO) q- Q2(xl) -I- ...... q- Q2(XM).

Thus, the RIVQ operates in two modes: it operates in one mode when the

index J of the quantized input falls below a given index I and another when

the index J falls above the index I.

Methods for updating the code book

In this section, we present two algorithms used to update the first stage

quantizer. The adaptation algorithms use the fact that with the RIVQ the

output values are always within a prescribed distance of the inputs. This

means that the set of output values of the RIVQ can be viewed as an ac-

curate representation of the inputs and their statistics. In the following we

first present a backward adaptive algorithm which uses only the outputs for

adaptation, and an adaptation algorithm which uses some side information

for adaptation. We have called the algorithm forward adaptive even though

this algorithm also uses the past outputs for adaptation.



Backward Adaptive Quantization In this method,wedivide the input
sequenceinto intervals and usethe outputs of quantizerof the previous in-
terval asa training sequenceand the presentcodebook as initial code book
for thegeneralizedLloyd algorithm. By clusteringall the past quantizedout-
puts, a new codebook is generated.This new codebook is usedto encode
the next blockof input. Wenote that in the beginning the training sequence
is small dependingon the length of the update interval, but after sometime,
the length of the training sequenceincreases.The secondstageVQ could
alsobe updated in a similar fashion. In this method no overheadis needed
sinceboth the encoderand the decodergeneratethe samecode book.

Forward Adaptive Quantization In this approachwe treat a subsetof
the output setof the previousintervalsasour codebook.We usethe method
describedin [13] to inform the receiverof which elementsof the previous
outputs form the codebookfor the next interval. Supposean output set, in
order of first appearance,is {p, a, q, s, l, t,r}, and the desired codebook for

the interval to be encoded is {a, q, l, r), then we would transmit the binary

string0110101 to the receiver. The is correspond to the letters in the output
set which would be elements of the desired codebook. We select the subset

for the current interval by finding the closest vectors from our collection of

past outputs to the input vectors of the current set. This means that there

is an inherent delay of one interval imposed by this approach. The overhead

required to send the codebook selection is M/N where M is the number of

vectors in the output set, and N is the interval size.

Preliminary Simulation Results

We simulated the proposed technique using the Lena image and the Xray,

Couple and Girl images from the USC database. The images were divided

into 4 x 4 blocks (dimension 16). The initial code books for both stages were

generated using the USC Girl and the USC Couple images as the training

set. The threshold was chosen to be 500. The update interval was every 8192

pixels or 512 vectors.

We compared the results of the proposed systems with an LBG VQ with

the test image outside the training set and where the test image was also
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the training image. As expectedthe proposedapproachsignificantly outper-

formed the LBG VQ with the mismatched training image. However even for

the case where the LBG VQ used the same image as both training and test

image, the performance of the proposed system was very close to the LBG

VQ. We are currently using the proposed technique to code video sequences

which we will compare to the MPEG algorithm.

In all cases that the adaptation is very robust, and the performance close to

the ideal omniscient case. Therefore the technique could be used in situa-

tions where the source statistics are unknown or change rapidly. We intend

to present results further justifying these conclusions by the time of the con-

ference.
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Vector Quantization of Non Stationary Sources*
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Abstract

Common problems with Vector Quantization (VQ)

include encoding complexity, memory requirements,

a mismatch between training and test statistics, and

'overload' errors. These problems become increasingly

pronounced when dealing with nonstationary sources

such as a video source. We propose an adaptive vec-

tor quantization algorithm which uses an extension of

the recursively indexed scalar quantizer to resolve these

problems. The use of a recursively indexed VQ re-

sults in distortion limited outputs which can be used

in adaptive algorithms. We present a backward adap-

tive algorithm and another which could be classified as

forward adaptive.

1 Introduction

Vector quantization (VQ) is one of the more popu-

lar compression techniques to appear in the last twenty

years. Numerous compression techniques, which in-

corporate VQ, have been proposed. The basic tech-

nique is simple. The source sequence is blocked into
vectors. These vectors are compared to a set of rep-
resentative vectors called a codebook. The index of

the vector in the codebook which provides the closest

match (generally in the sense of the Lx or L2 norm)
is then transmitted. The codebook is usually gener-

ated using a clustering algorithm. The most popular

algorithm for codebook generation is the generalized

Lloyd algorithm proposed by Linde, Buzo, and Gray

[1]. There are several drawbacks to the use of the

LBG quantizers. These include search complexity and

memory requirements, especially at higher rates, and a
mismatch between the codebook and the inputs. The

latter mainly stems from the fact that the VQ is gen-

erally designed for a specific rate and a specific class of

inputs. When the bandwidth constraints and/or the

*This work was supported by the NASA Goddard Space
Flight Center under Grant NAG 5-1612.

source statistics change this can result in severe degra-

dation in the quality of the reconstructed output.

There have been a number of attempts at overcom-

ing these problems. In order to reduce the search

complexity, a number of techniques have been pro-

posed which impose structure on the codebook en-

tries. These include tree structured VQs, lattice VQs,

and classified VQs [2]. However, each approach has
its own drawbacks. The tree structured and classified

VQs do nothing about the memory requirements. In

fact the tree structured VQs can actually excarbate

the memory requirements problem. The lattice quan-

tizers can avoid both search and memory problems,

however, these quantizers remove no redundancy from
the source.

Residual quantizers (RQs), also known as multiple-

stage VQs, have been introduced to reduce both the

computation and memory requirements. In the RQs,
each stage uses a small code book to encode the errors

(residuals) of the preceding stage [3]. Recently, Barnes

and Frost [4, 5] investigated the use of direct-sum code

book with RQs to minimize the memory requirements

of VQs. In their work, the RQ stages are jointly opti-
mized. They concluded that their new design method

led to an improvement in performance of the VQs.

All of these methods assume that the code book,

large or small, accurately reflects the input image
statistics. However this is not always the case, es-

pecially when coding a nonstationary source such as

a video sequence. To guard against degradations in

the quality of the reconstruction one could use a large

"universal" codebook which was trained using vectors

from a number of statistically different sources [6].

Unfortunately, due to the size requirements this can

excarbate the search and memory requirements. Fur-

thermore it is a minimax solution, which while provid-

ing some insurance against severe degradation, does

not provide the best performance for a given code-
book size. These problems can be somewhat allevi-

ated by using only a subset of the universal codebook

at any given time [7]. The composition of this sub-



setdependson localstatisticsandis transmitted to

the decoder as side information. This avoids the mini-

max problem while retaining the "universality" of the

codebook. Other approaches which use some sort of

codebook adaptation have also been proposed in which

elements of the codebook are replaced as coding pro-

ceeds [8, 9, 10, 11]. These approaches are generally of

a forward adaptive nature in that the update proce-
dure requires the transmission of side information.

In this paper, we propose an adaptive technique for

vector quantization of nonstationary sequences. As

our application area we use image coding. The tech-

nique is an extension of the recursively indexed scalar

quantization algorithm [12]. This approach involves

the use of a small code book, reducing the compu-

tational complexity. The code book adapts to the in-

put statistics. We present both forward and backward

adaptation rules.

This paper is organized as follows. First, the basic

technique involving the estension of the RISQ algo-

rithm is introduced in section 2. In section 3, methods

used to update the code book are presented . This is

followed in section 4 by some preliminary simulation
results.

2 The Recursively Indexed Vector

Quantizer (RIVQ)

In [12] a Reeursively Indexed scalar quantizer

(PdSQ) was presented. The RISQ algorithm is briefly
described as follows.

For a given quantizer stepsize A and a positive in-

teger K, define zr and zh as follows:

=, = -L_-_JA

zh=xt+(K-1)A

where [zJ is the largest integer not exceeding z. A
recursively indexed quantizer of size K is a uniform

quantizer with step size A (the uniform spacing both

between the thresholds and between the output lev-

els) and with zt and xh being its smallest and largest

output levels (Q defined this way always has 0 as an

output level). The quantization rule Q is given as fol-
lows:

For a given input value z if x falls in the interval

(zt + (A/2),zh - (A/2)), then Q(z) is the nearest

output level. If z is greater than z_ - (A/2), see if
A

x,=x - e + (A/2), - (zx/2)).

Ifso, Q(z) = (xh, Q(xl)).

If not, form x2 = x - 2xh and do the same as for

Xl.

This process continues until for some m, xm = x -

mxh falls in (z_(A/2), zh - (A/2)), in which case z
will be quantized into

Q(x) = (xh, Xh,''', Xh, Q(xm))

If x is smaller than xl + (A/2), a similar procedure to

this is used, i.e., xm = x - mxt is formed so that it

falls in (zt + (A/2), Xh -- (A/2)), and is quantized to

In summary, the quantizer operates in two modes:

it operates in one mode when the input falls in the
A

range (x_ + @, xh - "T), and another when the input

falls outside of the specified range. The distortion per
sample is always bounded by a_-.

It is not possible to directly extend the RISQ to vec-
tor quantization as there are some fundamental differ-

ences between scalar and vector quantizers. The input

to a scalar quantizer is assumed to be lid. The vector

quantizer on the other hand can be viewed as a pat-

tern matching algorithm [13]. The input is assumed to

he one of a number of different patterns. The scalar

quantizer is used after the redundancy has been re-

moved from the source sequence, while the VQ takes

advantage of the redundancy in the data.
With these differences in mind we view the recur-

sively indexed vector quantizer (RIVQ) as a two stage
process. The first stage performs the normal pattern

matching function, while the second stage recursively

quantizes the residual if the magnitude of the resid-
ual is greater than some prespecified threshold. The

codebook of the second stage is ordered so that the

magnitude of the codebook entries is a nondecreasing
function of its index. We then choose an index I which

will determine the mode in which the RIVQ operates.

The quantization rule Q is given as follows:

For a given input value x0, we have the following:

• Quantize z0 with the first stage quantizer Q1.

• If the residual Ilx0- Qa(x0)ll is below a specified

threshold then Ql(x0) is the nearest output level.

• Otherwise generate xl = xo - Ql(xo) and quantize

using the second stage quantizer Q2. Check if the

index J1 of the output is below the index I. If so,

Q( 0) = + Q2( x).

If not, form

• = -

and do the same for the same as for xl.



This process is repeated until for some time m, the

index Jm falls below the index I, in which case z0 will

be quantized to

Q( 0) = Ql(x0) + + ...... + Q2(xM).

Thus, the RIVQ operates in two modes: it operates

in one mode when the index J of the quantized input

falls below a given index I and another when the index
J falls above the index I.

3 Methods for updating the code book

In this section, we present two algorithms used to

update the first stage quantizer. The adaptation al-
gorithms use the fact that with the RIVQ the output

values are always within a prescribed distance of the

inputs. This means that the set of output values of

the RIVQ can be viewed as an accurate representa-

tion of the inputs and their statistics. In the following

we first present a backward adaptive algorithm which

uses only the outputs for adaptation, and an adapta-

tion algorithm which uses some side information for

adaptation. We have called the algorithm forward

adaptive even though this algorithm also uses the past

outputs for adaptation.

3.1 Backward Adaptive Quantization

In this method, we divide the input sequence into

intervals and use the outputs of quantizer of the pre-

vious interval as a training sequence and the present

code book as initial code book for the generalized

Lloyd algorithm. By clustering all the past quantized
outputs, a new code book is generated. This new code

book is used to encode the next block of input. We

note that in the beginning the training sequence is

small depending on the length of the update interval,

but after some time, the length of the training se-
quence increases. The second stage VQ could also be

updated in a similar fashion. In this method no over-
head is needed since both the encoder and the decoder

generate the same code book.

3.2 Forward Adaptive Quantization

In this approach we treat a subset of the output set

of the previous intervals as our codebook. We use the

method described in [7] to inform the receiver of which

elements of the previous outputs form the codebook

for the next interval. Suppose an output set, in order

of first appearance, is {p, a, q, s, I, t, r}, and the desired

I11

20

30

40

Rate #inputs #outputs

bits/p_el to stage 2 _omstage 2
1.64 3378 8855

1.34 3590 6385

1.17 3590 4951

PSNR

31.97

30.74

29.67

Table 1: Effect of III on the backward adaptive RIVQ.

codebook for the interval to be encoded is {a, q, l, r},
then we would transmit the binary string0110101 to

the receiver. The ls correspond to the letters in the

output set which would be elements of the desired
codebook. We select the subset for the current inter-

val by finding the closest vectors from our collection

of past outputs to the input vectors of the current

set. This means that there is an inherent delay of one

interval imposed by this approach. The overhead re-

quired to send the codebook selection is M/N where

M is the number of vectors in the output set, and N
is the interval size.

4 Preliminary Simulation Results

We simulated the proposed technique by applying it

to the image compression problem. As our test images
we used a 256 x 256 section of the Lena image and

the Xray image from the USC database. There are

several parameters in the RIVQ that can be adjusted

to vary the performance. These include the threshold

for quntization of the residual, the second stage index

I. We do not as yet have an analytical approach to

setting these parameters, and we present some initial

results from empirical evaluations.

The image is divided into 4 × 4 blocks, therefore

the VQs have dimension 16. The initial code books

for both stages were generated using the USC girl and

the couple images as the training set. The threshold
was chosen to be 500. The update interval was every

8192 pixels or 512 vectors.

Table 1 shows the results for the backward adap-

tive approach with different values of the index I. The

value shown in the table is actually the magnitude of
the element in the codebook table at index I. The im-

age used here is the a 256x256 portion of the Lena im-

age. For reference a codebook designed using the Lena

sub-image as both the training and test input provides

a PSNR of 32.77 dB at a rate of 1.25 bits/pixel.
The difference between this and the ideal ease at

the same rate is around 2.5 dB. There is a distortion-



III Rate

20 1.69

30 1.44

40 1.31

#inputs #outputs

to stage 2 _omstage 2
3030 7342

3173 5312

3266 4280

PSNR

32.46

31.42

30.49

Table 2: Effect of III on the forward adptive RIVQ.

III Rate

30 1.30

40 1.15

Table 3:

RIVQ.

# inputs # outputs

to stage 2 _omstage 2
3426 6055

3542 4797

PSNR

31.02

30.00

Performance of restricted forward adptive

rate tradeoff which is a function of I. As I increases

the PSNR and the rate both drop off.

In Table 2 we look at the effect on the performance

of the forward adaptive scheme when the index value

I is changed.

Notice that as [I[ becomes larger the number of

requantizations goes down, as would be expected, but

the number of inputs with residual magnitudes greater
than the threshold goes up. The reason for this is that

as the value of [I[ goes up, the reconstruction accuracy
goes down. This leads to codebooks that are not as

representative of the input which in turn results in
larger residuals.

If instead of allowing the eneoder to select a code-

book from the entire set of past outputs we use only

the last 256 outputs as the codebook, we remove the
overhead involved in codebook transmission. The re-

sults for this case are shown in Table 3.

Comparing these results to those in Table 2, we see

that there has been a slight drop in rate accompa-
nied by a slight drop in PSNR values. If we look at

the number of requantizations we see that these have

actually increased, so some of the savings from the

overhead gets used in the requantization.

In all cases that the adaptation is very robust, and
the performance close to the ideal omniscient case.

Therefore the technique could be used in situations

where the source statistics are unknown or change

rapidly. We intend to present results further justifying
these conclusions by the time of the conference.
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1 Introduction

One of Shannon's many fundamental contributions was his result that source coding and

channel coding can be treated separately without any loss of performance as compared to an

optimum system [1]. The basic design procedure implied by Shannon's theorems consists of

designing a source encoder which changes the source sequence into a series of (approximately)

independent, equally likely binary digits followed by a channel encoder which accepts binary

digits and puts them into a form suitable for reliable transmission over the channel [1]. One

aspect of the overall optimum system not addressed by Shannon is any increase in system

complexity that results from this separation. Massey [2] and Anchetta [3] showed that for

distortionless transmission of the source under the constraint of linear source and channel

coders, a significant reduction in complexity with equivalent performance can be achieved

using a joint source/channel coder. Their scheme also differs from most data compression

schemes in that the bulk of the system complexity is transferred to the receiver.

The theorem that provides justification for the separate design of the source coder and the

channel coder, often called the Information Transmission Theorem [1], assumes that both

the source encoder/decoder pair and the channel encoder/decoder pair are operating in an

optimal fashion. Specifically, the source encoder is assumed to present the channel encoder

for optimal channel coding, and the channel encoder/decoder pair is assumed to reproduce

the source encoder output at the source decoder input with negligible distortion. Unfor-

tunately, there are practical situations in which these assumptions are violated - namely,

when the source encoder output contains redundancy, which occurs when the source encoder

is suboptimal, and when the source decoder input differs from the source encoder output,

which is a result of channel errors. These two situations are common occurrences in prac-

tical communication systems where source and/or channel models are imperfectly known,

complexity is a serious issue, or significant delay is not tolerable. Various approaches have

been developed to handle these situations, and they are usually grouped under the general

heading of joint source/channel coding

We have attempted to develop a more precise nomenclature by distinguishing three classes

of coders. One class of coders we designate as joint source channel coders because the source



and channelcodingoperationsare truly integrated, and in this classwe include the work of

Anchetta [3]and Massey[2], the work of Dunhamand Gray [4], who provedthe existenceof

joint source/channeltrellis codersfor certain fidelity criteria, and the joint source/channel

coderdesignsof Ayano_lu and Gray [5].

In a secondclass,denotedas concatenated source/channel coders, we place coders that cas-

cade known source coders and known channel coders, and allocate the fixed bit rate between

the source coder and the channel coder to maximize the system performance. Work in this

class includes that of Modestino and Daut [6] who investigated two dimensional differential

pulse code modulation (2D-DPCM) for image coding combined with short constraint length

convolutional codes, Modestino, Daut, and Vickers [7] who investigated 2D discrete cosine

transform (DCT) of images with convolutional codes, Modestino, Bhaskaran, and Anderson

[8] who studied tree encoding of images with convolutional coding, Comstock and Gibson [9]

who considered 2D-DCT coding of images in conjunction with Hamming codes, Moore and

Gibson [10] who evaluated DPCM speech encoding with self-orthogonal convolutional codes,

Reininger and Gibson [11] who studied backward adaptive prediction in DPCM speech cod-

ing along with high rate convolutional codes, and Goodman and Sundberg [12, 13] who

develop embedded DPCM speech encoding and punctured convolutional codes.

Constrained joint source/channel coding is our third class of coders and is so named because

the source coder and/or receiver are modified to account for the presence of a given noisy

channel. In this class of coder we place source coders which have been (re-)optimized subject

to a noisy channel constraint, such as the work by Kurtenbach and Wintz [14] on memoryless

scalar quantization for discrete memoryless channels, Farvardin and Vaishampayan [15] on

memoryless scalar quantizers and codeword assignments for the binary symmetric channel

(BSC), Vaishampayan and Farvardin [16] on 2D-DCT image coders for the BSC, Kumazawa

et al., on Linde, Buzo, Gray (LBG) vector quantization (VQ) of Gaussian sources for the

BSC, and Chang and Donaldson [17] on the optimization of DPCM systems for noisy channel

operation. Additional work on assigning binary codewords to quantizer outputs for noisy

channels can be found in the Rydbeck and Sundberg [18], DeMarca and Jayant [19], and

Zeger and Gersho [20].

Another subset in the class of constrained joint source/channel coders are those that use

3



someknowledgeof the sourceor sourcecoderproperties to detect channelerrors and com-

pensatefor their effects. In this group we include the work by Steeleand Goodman, and

Steele,Goodman,and McGonegal [21, 22] who detect errors in a speechcoder output by

monitoring the sample-to-sample differences in the reconstructed values and replacing those

reconstructed values whose differences are too large by the output of a smoothing circuit,

the work of Ngan and Steele [23], and Pitt, Swanson, and Yuen [24] who use similar ideas

to motivate the development of a method to recover from errors in an image transmission

system, the work of Reininger and Gibson [25] who use coefficients from neighboring blocks

in a 2D-DCT image coding system to detect errors and smooth out their effects, and the

work of Sayood and Borkenhagen [26, 27] who use redundancy in the coder output to per-

form sequence estimation. Hellman [28, 29] also suggests using the natural redundancy to

correct errors in joint source/channel coding, and proposes a rate 1 catastrophic code to aid

the process. The research described in this work is an extension of the work of Sayood and

Borkenhagen [26, 27], and generalizes the approach of [21]-[25]. An earlier version of this

work was presented in [30].

In the followin G section we describe the design criterion that is used for the various ap-

proaches presented in this paper. This is used in the following section to motivate some

modification of existing source coder/convolutional coder design. The proposed modifica-

tions are evaluated using simulations, and the results of the evaluations are used to propose

a class of non-binary convolutional encoders. Simulation results are presented which show

that the proposed designs substantially outperform conventional systems (in the assumed

scenario). "

2 The Design Criterion

For a discrete memoryless channel (DMC), let the channel input alphabet be denoted by

A = {ao, al,..., aM-l, }, and the channel input and output sequences by Y = {Yo, yl,...,

YL-_} and 1_ = {9o, 9_,...,9L-1}, respectively. If A = {A,} is the set of sequences A, =

{a;,0, ai.1,..., oti,L-1}, ai,keA, then the optimum receiver (in the sense of maximizing the
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probability of making a correct decision)maximizesP[C], where

P[C] = _ P[CII"]P[_" ]
Ai

This in turn implies that the optimum receiver maximizes P[CI_" ]. When the receiver selects

the output to be Ak, then P[CI]/] = P[Y = AklI"]. Thus, the optimum receiver selects the

sequence Ak such that

P[Y = Ak[?] _> P[Y = A,[_"] Yi

Noting that

P(Y[Y = P(]"[Y)P(Y)

P(?)

and for fixed length codes P(I _) is irrelevant to the receiver's operation, the optimal receiver

maximizes P(Y[Y)P(Y). If we impose a first order Markov assumption on {y,}, we can

easily show that [31]

P(_'[Y)P(Y) = H P@,lyi)P(y, ly,-1) (1)

This result addresses the situation in which the source coder output (which is also the channel

input sequence) contains redundancy. Using this result, we can design a decoder which will

take advantage of dependence in the channel input sequence. The physical structure of the

decoder can be easily obtained by examining the quantity to be maximized. The optimum

decoder maximizes P(_'IY)P(Y) or equivalently, log P(YiY)P(Y), but

log P(_"]Y)P(Y) = _"] log P(Y,[Yi)P(yi[yi-1) (2)

which is similar in form to the path metric of a convolutional decoder. Error correction

using convolutional codes is made possible by explicitly limiting the possible codeword to

codeword transitions, based on the previous code input and the coder structure. At the

receiver the decoder compares the received data stream to the a priori information about

the code structure. The output of the decoder is the sequence that is most likely to be

the transmitted sequence. In the case where there is residual structure in the source coder

output, the structure makes some sequences more likely to be the transmitted sequence,



given a particular receivedsequence. In other words, even when there is no structure being

imposed by the encoder, there is sufficient residual structure in the source coder output that

can be used for error correction. The structure is reflected in the conditional probabilities,

and can be used via the path metric in (2) in a decoder similar in structure to a convolutional

decoder. However, to implement this decoder we need to be able to compute the path metric.

Examining the branch metric, we see that it consists of two terms log P(Y_IY_) and log P(Y_ly_-x).

The first term depends strictly on our knowledge of the channel. The second term depends

only on the statistics of the source sequence. Therefore knowledge of both the channel and

source statistics is necessary for implementing this path metric. In our simulations we have

obtained the channel statistics by assuming that the channel is a binary symmetric channel

with known probability of error. We have obtained the second term using a training se-

quence. The sequence used for testing the proposed approach is different from the training

sequence.

In [26] we showed that the use of the decoder led to dramatic improvements under high

error rate conditions. However at low error rates the performance improvement was from

nonexistent to minimal. This is in contrast to standard error correcting approaches, in which

the greatest performance improvements are at low error rates, with a rapid deterioration in

performance at high error rates. In this work we combine the two approaches to develop a

joint source channel codec which provides protection equal to the standard channel encoders

at low error rates while also providing significant error protection at high error rates.

3 Convolutional Encoders and Joint Source/Channel

Decoder

In [27] the output sequence of the source coder was taken as the sequence {yi}. The received

sequence {_} formed the input to the joint source/channel (JSC) decoder which was simply

a viterbi decoder with a path metric similar to (2). The output of the JSC decoder was

then passed to the source decoder. As mentioned above, this approach provided significant

improvements only at high error rates. If we had used a standard convolutional encoder
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with the sourcecoder,this would haveprovided excellenterror protection at low error rates

(of coursewith an increasein the transmissionrate). Howeverin spite of the increasein

transmissionrate the convolutionalcoder still doesnot provide any protection at high error

rates

The convolutional decoderusesthe structure imposedby the encoder and the Hamming

metric to provideerror protection. The decoderdoesnot useany of the residualstructure

from the sourcecoderoutput. We canmakeuseof the residualstructure by noting that the

path labelstransmitted by the convolutional encodercomprisethe channelinput alphabet

{Yl}. Wecanthen useatraining sequenceto obtain the transition probabilities {P(yilyi-a)},

and an estimateof the channelerror probability to obtain {P(fJilYi)}. Thesecanbe usedto

computethebranch metric L

L = log P(yily;-1) + log P(z)i[yi) (3)

which can be used instead of the Hamming metric in the decoder.

We simulated this approach using a two bit DPCM system as the source encoder. We used

the two images 'shown in Figure 1 as the source. The USC Girl image was used for training

(obtaining the requisite transition probabilities) and the USC Couple image was used for

testing. The output of the DPCM system was encoded using a (2,1,3) convolutional encoder

with connection vectors

g(') = 64 g(2) = 74 (4)

The convolutional encoder was obtained from [32]. The performance of the different systems

was evaluated using two different measures. One was the reconstruction signal-to-noise ratio

(RSNR) defined as

RSNR = 101ogzo _(ul- fii) 2 (5)

where ui is the input to the source coder (source image) and ,_ is the output of the source

decoder (reconstructed image). The other performance measure was the decoded error

probability. The received sequence was decoded using a standard convolutional decoder and

the JSC decoder. A block diagram of the system is shown in Figure 2. The results are

presented in Figure 3. Looking at the decoded error performance results in Figure 3a we
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seethat the performanceseemsto be about what we expectedfrom the results of [27]: an

improvementat high error rates for the system with the JSC decoderwith someloss in

performanceat lower error rates. However,from Figure 3b we seethat while the decoded

error probability went down for the systemwith the JSCdecoderat high error rates, there

wasno commensurateimprovementin RSNR. In fact for probabilities of error below 0.15,

there is a decrease in the RSNR for the system with the JSC decoder over a conventional

system. While we had expected some slight disadvantage for the system with the JSC

decoder at low error rates, the disadvantage here is not slight and is not restricted to low

error rates.

To see why this happened, let us exanaine our assumptions. The use of the JSC decoder

was predicated on the assumption that there was some structure in the source coder output.

The unspoken assumption was that this structure would get translated to the channel coder

output. In this particular example the source coder output is a sequence of two bit values.

The channel coder takes the source coder output one bit at a time to generate the two bit

convolutional coder output. It is highly unlikely that the sample-to-sample redundancy in

the source coder output would translate to a bit-to-bit redundancy in the quantizer labels

which could then be transferred to the convolutional encoder output. Thus our unspoken

assumption is being violated, and the results in Figure 3 reflect this fact.

If the above hypothesis is indeed true, then the destruction of the structure in the source

coder output could be prevented if we used a convolutional coder which uses an input

wordlength k of two. In order to verify this hypothesis we used a (4,2, 1) convolutional

coder which is equivalent to the (2, 1, 3) coder in terns of rate and memory, but maps the

two bit outputs from the source coder directly to the channel coder output. The connection

vectors for this coder are [32]

g_l) = 6 g_2) = 0 g_3) = 6 gl 4) = 4

0 g7) = 6 g?)= 4 2

The results for the (4, 2,1) coder, shown in Figure 4, seem to bear out our hypothesis. The

decoded probability of error is uniformly better for the system with the JSC decoder. The

same is true for the RSNR with an improvement of about 4 dB at P(e) = 0.1, and about a
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6 dB improvement at P(e) = 0.25. This is a marked contrast to the results for the (2, 1,3)

code shown in Figure 3b where there is a 4 dB degradation in the performance of the system

with the JSC decoder at P(e) = 0.1.

The two rate 1/2 systems are compared in Figure 5. We have not included the results for the

(2, 1, 3) system with the JSC decoder to reduce clutter. Notice that while the conventional

(2, 1, 3) system is superior to the conventional (4, 2, 1) system at low error rates, the (4, 2, 1)

system with the JSC decoder outperforms it as well.

The simulations were repeated with a rate 2/3 (3,2,2) convolutional coder with connection

vectors

g ll= 7 1 gI )= 4

g?= 2 gT)= 5 g?)= 7

The results are shown in Figure 6. Notice that while there is some drop in performance for

the system with the JSC decoder at low error rates, the overall performance is as expected.

There is an improvement of about 6 dB at P(c) = 0.1.

In this section we have shown how the use of the residual redundancy in the source coder out-

put can improve the performance of conventional source coder/convolutional coder systems.

In order to make use of this redundancy we see that the channel coder input characteristics

have to match the source coder output characteristics. In the next section we take this

approach one step further and design channel coders with the specific goal of taking advan-

tage of the redundancy in the source coder output. An additional advantage of the coders

described in the next section is that there is an automatic match between the source coder

output and the channel coder input.

4 A Modified Convolutional Encoder

Given that the preservation of the structure in the source coder output requires the channel

coder input alphabet to have a one-to-one match with the generally nonbinary source coder,

we propose a general nonbinary convolutional encoder (NCE) whose input alphabet has the

requisite property.
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Let x,,, the input to the NCE, be selected from the alphabet A = {0, 1, 2, ..., N - 1}, and let

y,_, the output alphabet of the NCE, be selected from the alphabet S = {0, 1, 2, ..., M - 1}.

Then the proposed NCEs can be described by the following mappings

1. M = N2; y,, = Nz,__l + x,,

The number of bits required to represent the output alphabet using a fixed length code is

[log2(M)] = [log2(N2)] = [21og2(N)]

Therefore in terms of rate, this coder is equivalent to a rate 1/2 convolutional encoder. The

encoder memory in bits is 2[log2(N)] as each output value depends on two input values.

As an example, consider the situation when N = 4. Then A = (0,1,2,3} and S =

{0,1,2,...,15}. Given the input sequence x,, : 0 1 3 0 2 1 1 0 3 3 and assuming the

encoder is initialized with zeros, the output sequence will be y,_ : 0 1 7 12 2 9 5 4 3 15.

The encoder memory is four bits. Notice that while the encoder output alphabet is of size

N 2, at any given instant the encoder can only emit one of N different symbols as should be

the case for a rate 1/2 convolutional encoder. For example if yn-1 = 0, then y,, will take on

a value from (0, 1,2, ..., (N - 1)}. In general, given a value for Y,-1, y_, will take on a value

from (c_N,c_N + 1,_N + 2,...,e_N + N- 1}, where _ = yn_,(modN). This structure can be

used by the decoder to provide error protection. The encoder is shown in Figure 7a.

2. M = N3; y,, = N2x,,_2 + Nxn-1 + xn

This encoder is equivalent to a rate 1/3 convolutional encoder with an encoder memory in

bits of 3 [log2(N)]. Given the same input as the previous example, the output alphabet for

the NCE is

S= {0, 1,2,..., 63}

and the output sequence for the same input sequence is

y,: 01 72850937201915

The encoder memory is six bits. In this case even though the encoder output alphabet is of
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sizeN 3, at any instant the encoder can only emit one of N symbols. In general, given a value

for Y,,-1, Y, will take on a value from {fiN, fl N + 1, ..., fiN + N- 1 }, where fl = y,_l (modN2).

A block diagram of the encoder is shown in Figure 7b.

3. M=N 3

y_ = N2x2_ + Nx2,,-I + x2,_-2

The final encoder we consider is equivalent to a rate 2/3 convolutional coder. Notice that

while the input output relationship looks similar to a rate 1/3 encoder, we generate one

output for every two inputs. Thus, while the number of bits needed to represent one letter

from the output alphabet is three times the bits needed to represent a letter from the input

alphabet, the rate is 2/3 because two input letters are represented by a single output letter.

This coder could be viewed as a rate 2/3 punctured nonbinary convolutional coder. Again,

assuming a value of 4 for N, the output alphabet is of size 64, and for the input sequence

used previously, the output sequence is y,_ : 0 52 35 22 49 3.

The encoder memory is again 6 bits. The rate of the encoder can also be inferred from the

fact that while the encoder output alphabet is of size N 3, at any instant the encoder can

translrdt one of N 2 (instead of N) symbols. Given a value for y,_-l, Y,_ can take on a value

from the alphabet {TN2, vN 2 + 1,...,7N 2 + (N 2 - 1)} where 7 = y,___(modN). A block

diagram of the encoder is shown in Figure 7c.

All of these encoders can be designed for any value of N. Furthermore, their input and

output alphabets as described above can easily be seen as indices to tables of codewords.

We will exploit this latter property in the next section for allocating codewords to the NCE

outputs.

4.1 Binary Encoding of the NCE Output

We will make use of the residual structure in the source coder output (which is preserved

in the NCE output) at the receiver. However, we cart also make use of this structure in

selecting binary codes for the NCE output. An intelligent assignment of binary codes can
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improve the error correcting performanceof the systemas can be seenfrom the following

example.

Let N be2, and let us use the rate 1/2 NCE. In this caseif y,_ = 0, Y,_+I cannot be 2 or 3,

because y, = 0 means an = 0, and Y,,+l = 2 or 3 means x,, = 1. Thus a decoded sequence

cannot have 2 or 3 following 0.

Let us assign fixed length codewords to the NCE outputs as

0:00, 1:01, 2:10, 3:11

Now suppose the transmitted sequence was the all zero sequence, the metric used was the

Hamming distance, and the received sequence is 00001000000000; that is, there is an error

in the fifth bit. If the receiver decoded the first four bits as 0, 0 then it cannot decode the

fifth and sixth bits as 2 for the reason noted above. The only two options are decoding them

as 0 or 1. If we decoded them as 0, we could continue decoding the rest of the sequence

as 0, 0..., and the Hamming distance between the received and decoded sequence would

be one. If we decoded them as 1, we would have to decode the next set of two bits as 2

or 3 because 0 cannot follow 1. Decoding as 2 gives the smallest Hamming distance so we

decode the seventh and eighth bit as 2. This gives a total Hamming distance of two for the

incorrect path. Thus the receiver will select the correct path (the path with the smallest

Hamming distance). If the assignment had been chosen as

0:00; 1:11; 2:10; :3:01

then the Hamming distance for the closest incorrect path would have been three instead of

two.

When each allowable sequence is equally likely, there is little reason to prefer one particular

assignment over others. However, when certain sequences are more likely to occur than

others, it would be useful to make assignments which increase the 'distance' between likely

sequences. While, for small alphabets it is a simple matter to assign the optimum binary

codewords by inspection, this becomes computationally impossible for larger alphabets. We

use a rather simple heuristic which, while not optimal, provides good results.

The number of M bits codewords that have to be assigned are exactly 2 M. Our strategy is
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thereforeto try to maximizethe Hammingdistancebetweencodewordsthat arelikely to be

mistakenfor one another•

First we obtain a partition of the alphabet basedon the fact that given a particulkr value

for Y,_-I, y_, can only take o11 values from a subset of the full alphabet. To see this, consider

the rate 1/2 NCE; then the alphabet S can be partitioned into the following sub-alphabets:

So = (0,1,2,...,N- 1)

$1 = (N,N + I,N + 2,...,2N-1)

S N-, = (N(N-1),N(N-1)+I,N(N-1)+2,...,N 2-1)

where the encoder will select letters from alphabet Sj at time n if j = y,_-a(modN). Now

for each sub-alphabet we have to pick N codewords out of M (= N 2) possible choices. We

first pick the sub-alphabet containing the most likely letter. The letters in the sub-alphabet

are ordered according to their probability of occurrence. We assign a codeword a from the

list of available codewords to the most probable symbol. Then, assign the complement of a

to the next symbol on the list. Therefore the distance between the two most likely symbols

in the list is K = [log 2 M] bits. We then pick a codeword b from the list which has maximum

distance from a such that the Hamming distance from a and the Hamming distance from

the complement of a differ by at most one. We assign it and its complement to the next

two elements on the list. This process is continued until all letters in the subalphabet have

a codeword assigned to them.

As an example, consider the case where N = 4. The partitions are

So = (0,1,2,3)

s, = (4,5,6,7)

$2- (8,9,10,11)

$3 = (12,13,14,15)

- 13



Assuming that 0 is the most probable symbol, we start, by assigning codewords to the So

sub-alphabet. Suppose

P(0) _> P(3) _> P(1) >_ P(2)

We first pick a 4 bit codeword for 0 as 0000. The next most probable symbol in this

sub-alphabet is 3; therefore the codeword for 3 is the complement of the codeword for 0;

3:1111. The codeword for 1 is at a Hamming distance of two from the codeword for 0 and

the codeword for 3. The codeword 0011 satisfies this requirement; therefore the codeword

for 1 is 0011 and the codeword for 2 is 1100. Suppose the next symbol which is close in

probability to the symbol 0 is 4. We select the sub-alphabet containing that symbol which

is $1. To the symbol 4 we assign a codeword from the list of unassigned codewords which is

furthest from the codeword for 0. There are several possibilities for this; we pick 1110. We

then follow the same procedure for the 5'1 sub-alphabet. Continuing in this manner we get

the assignments shown in Table 1.

4.2 Simulation Results

The proposed nonbinary convolutional encoders were simulated using the same setup as was

used in the previous simulations. The binary assignments were made using the statistics of

the training image which again was the USC Girl image. The test image was once more the

USC Couple image. The simulation results are presented in Figures 8 and 9.

In Figure 8 the performance of the rate 1/2 NCE is plotted alongside the results for the

(2,1,3) coder and the (4,2,1) coder. For both situations we used the system with the JSC

decoder. Recall that in the previous simulations the (4,2,1) coder with the JSC decoder

substantially outperformed all other rate 1/2 systems. From the results in Figure 8 we can

see that the rate 1/2 NCE substantially outperforms the (4,2,1) coder with the JSC decoder.

Comparing these results against the original results in Figure 3 for the conventional (2,1,3)

coder we see that the rate 112 NCE provides impressive gains: at P(e) = 0.1 the gain of

the NCE over the conventional (2,1,3) system is about 8 dB while at P(e) = 0.25, the gain

is about 12 dB! Even more important is the fact that the performance of the rate 1/2 NCE

- 14



is relatively flat overa very wide rangeof channelconditions. The RSNR at P(e) = 0.1 is

less than 1 dB below the value obtained under noiseless channel conditions. Over the entire

range of channel error probabilities from 0 to 0.25, the RSNR drops slightly more than 4 dB

The performance of the rate 2/3 NCE, while not as impressive as the rate 1/2 NCE on an

absolute scale, is still excellent in a relative sense. The performance improvement over the

conventional (3,2,2) coder at P(e) = 0.1 is again about 8 dB. In fact at that error rate the

rate 2/3 NCE outperforms the conventional rate 1/2 systems.

5 Conclusion

In this paper we have presented two ways of using the structure in the source coder output for

forward error correction. The first approach simply modifies the decoder in a conventional

source coder/convolutional coder system to take advantage of the residual redundancy. This

approach would be especially useful in situations where a conventional system was already in

place and a change in channel characteristics or transmission requirements required that the

system be 'updated'. The modifications in this case would be relatively modest and would

only need to be performed at the decoder. The simulation results show improvements of more

than 6 dB at high error rates. The second approach involves a new design of the channel

encoder. The simulation results pertaining to this design show excellent performance over a

wide range of channel error probabilities, from 0.0 to 0.25. The performance improvements

range as high as 12 dB at high error rates. This design might be especially useful in the

codecs designed for the mobile radio communication channel.

An issue that has not been considered in this paper is the effect of mismatch between the

actual and assumed channel statistics. Another important area of future research is the

development of a theoretical measure analogous to dfr¢, for use in predicting and classifying

performance of the coders developed in this paper.
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Table 1: Codeword Assignments

Symbol Code Symbol Code

0 0000 8 1011

1 0011 9 0111

2 1100 10 0100

3 1111 11 1000

4 1110 12 0101

5 1101 13 1001

6 0001 14 1010

7 0010 15 0110


